Dyschromatosis Universalis Hereditaria

Young Suck Ro, M.D., Tchae Sik Nam, M.D., Chang Woo Lee, M.D.,
Chan Kum Park, M.D.*, Weoun Pheel Seou, M.D**, Jae Hong Kim, M.D.

Department of Dermatology and Pathology*, Hanyang University College of Medicine,
Department of Dermatology, Capital Armed Forces General Hospital**, Seoul, Korea

Dyschromatosis universalis hereditaria is a rare pigmented disorder initially described
in the Japanese literature. The pattern of inheritance is believed to be autosomal
dominant, but many sporadic cases have been reported.

We encountered a family in which dyschromatosis universalis hereditaria occurred
in seventeen members of three generations. In the two members whom we observed,
typical skin lesions were distributed all over the body except palms and soles. By pedigree
analysis, we found an autosomal dominant pattern of inheritance.

The differential diagnosis of the other reticulate pigmented disorders is discussed with
a review of dyschromatosis reported in the Korean literature.
(Ann Dermatol 2(1) 24-30, 1990)

Key Words: Dyschromatosis universalis hereditaria, Autosomal dominant

Dyschromatosis is characterized by spotted
hyperpigmentation mingled with patches of
hypopigmentation. Two types of dyschromatosis
have been reported: localized dyschromatosis, also
known as Dyschromatosis Symmetrica Hereditaria
(DSH)1-6 and widespread dyschromatosis, also
known as Dyschromatosis Universalis Hereditaria
(DUH).7-9 Although both types of dyschroma-
tosis have a similar primary lesion clinically but
vary in the extent of cutaneous involvement, it is
not fully dismissed that they are different clinical
expressions of the same pathologic process.

The early reports of DUH were confined to
Japanese patients,7-9 but identical or closely simi-
lar syndrome has been reported among South Afri-
cans,10 the English11 and Americans.12 In Korean
literature, we could find only two reported cases
of DUH. In 1969, Kim13 reported the first case of
DUH in a 21-year-old male who had no family his-
tory. Myung et al.,14 in 1979, described an addi-
tional case in a 18-year-old female with family
history of a similar condition. The affected family
members were her mother, maternal uncle and two
aunts and maternal grandfather. Several
authors7-8 have suggested that DUH may be in-
herited by an autosomal dominant gene. But in
view of the wide variety of gene penetrance and
expression, it is difficult to establish the exact mode
of inheritance from the limited numbers of cases.
Fortunately, we recently observed a case of DUH
present in a family with seventeen affected mem-
ers, that was transmitted by an autosomal
dominant trait in three generations.

REPORT OF CASES

Case 1.: A 20-year-old man visited the Derma-
tology Department of Hanyang University Hospital
in April, 1988, with mottled pigmented and depig-
mented macules in a reticular pattern on the trunks

Received October 23, 1989
Accepted for publication January 23, 1990
Reprint request to: Young Suck Ro, M.D., Department of
Dermatology, Hanyang University Hospital, 17, Haengdang-
Dong, Sungdong-Ku, Seoul, 133-792, Korea
and extremities. Pigmentary changes began to show on his buttocks at the age of 3 months and spreaded to the trunk during the next 5 months, then to the extremities slowly but progressively. There was no history of previous inflammation or any other dermatosis, and no seasonal variation in the intensity of pigmentation. In his family, sixteen members including his mother were affected with the same condition (Fig. 1). On the physical examination, 2 to 5 mm-sized multiangular, reticulated brown pigmented and depigmented macules were closely intermingled with each other all over the body (Fig. 2). His face was involved only slightly with small pigmented macules resembling freckles and his palms and soles were spared. On the lower back, a few well-defined, irregular shaped, hypopigmented macules were noted (Fig 3). There were no erythema, scales, wrinkles, or other epidermal changes. There were no subjective symptoms. Hairs, nails, and teeth were normal and no systemic anomaly was detected in the internal organs. Biopsy specimens were taken from the pigmented and depigmented lesions on the back and stained with hematoxylin-eosin and Fon-
Fig. 4. Decreased melanin granules were observed in the basal layer of the depigmented lesion as compared to the normal-appearing skin (Fontana’s silver stain, ×100).

Fig. 5. Increased melanin granules seen in the basal layer and in melanophages in the papillary dermis of the pigmented lesion (Fontana’s silver stain, ×100).

Fig. 6. Electron micrograph of the normal-appearing skin showing degenerative changes of melanocytes, such as dark cytoplasm and vacuolization of the cytoplasm (×3,000).

Fig. 7. Electron micrograph of the depigmented lesion showing decreased melanosomes and degenerative changes of the melanocyte (×3,500).

tana’s stain for melanin. The specimens showed increased melanin granules in the basal cell layer of the pigmented lesion and decreased melanin granules in the basal cell layer of the depigmented lesion. Melanophages were present in the papillary dermis underneath the pigmented area (Fig. 4, 5). Dopa-oxidase reaction showed no significant change in the total number of dopa-positive dendritic melanocytes in the pigmented vs. depigmented lesion. However, the depigmented lesion had less pigment as compared to the pigmented lesion. For the electron-microscopic study, a second biopsy was performed two months after the first visit. Biopsy specimens were taken from the normal-appearing skin of left forearm and the hyperpigmented/hypopigmented lesions of left side of abdomen. Ultrastructurally, normal numbers of melanocytes were seen at the basal cell layer and there were only differences in the number of the melanosomes according to the areas of pigmentation intensity. The melanocytes and some of the basal keratinocytes of normal-appearing skin and hypopigmented lesion showed degenerative changes such as dark cytoplasm and vacuolization of the cytoplasm (Fig. 6, 7).

Case 2: A 51-year-old woman, mother of case 1, also had similar skin lesion, which appeared in early infancy, first on the groin and axilla, and then spread to involve her trunk and extremities. Her palms and soles were spared. Other than the pigmentedary changes there were no epidermal changes. The lesions were not pruritic. Her general health
Dyschromatosis was first reported as a localized form by Matsumoto in 1923 as “leukopatia punctata et reticularis symmetrica” and later by Doi and Komaya in 1924 under the title “acropigmentio symmetrica-Dohi”. In 1929, 12 cases of a previously unrecognized pigmented disturbance in Japanese patients were studied by Toyama who first used the term “dyschromatosis symmetrica hereditaria”. In 1933, Ichikawa and Hiraiga described two families in which both mother and children exhibited a generalized speckled cutaneous pattern composed of both hyperpigmented and hypopigmented small macules. The palms and soles were not involved and there was no associated internal anomaly. They reported this widespread type of dyschromatosis as “dyschromatosis universalis hereditaria”.

Both types of dyschromatosis are very rare and only a few cases have been reported. Ito found in his clinic between 1925 and 1944 only 16 cases of DSH, and stated that dyschromatosis is thought

<table>
<thead>
<tr>
<th>Author</th>
<th>No.</th>
<th>Sex</th>
<th>Onset</th>
<th>Distribution</th>
<th>Family History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim, et al.</td>
<td>1</td>
<td>M</td>
<td>3y</td>
<td>Dorsa of hands & feet extremities face & neck</td>
<td></td>
</tr>
<tr>
<td>(1969)</td>
<td>2</td>
<td>F</td>
<td>12y</td>
<td>Dorsa of hands & feet extremities face & neck</td>
<td></td>
</tr>
<tr>
<td>Chun, et al.</td>
<td>3</td>
<td>M</td>
<td>2y</td>
<td>Generalized</td>
<td></td>
</tr>
<tr>
<td>(1970)</td>
<td>4</td>
<td>M</td>
<td>birth</td>
<td>Dorsa of hands & feet</td>
<td>Mother & maternal grandfather were also affected</td>
</tr>
<tr>
<td>Myung, et al.</td>
<td>5</td>
<td>F</td>
<td>10y</td>
<td>Dorsa of hands & feet</td>
<td>One brother was also affected</td>
</tr>
<tr>
<td>(1979)</td>
<td>6</td>
<td>M</td>
<td>9m</td>
<td>Generalized</td>
<td>Mother, one uncle, two aunts & maternal grandfather were also affected</td>
</tr>
<tr>
<td>Kim, et al.</td>
<td>7</td>
<td>M</td>
<td>12y</td>
<td>Dorsa of hands & feet extremities</td>
<td>Daughter of case 7</td>
</tr>
<tr>
<td>(1980)</td>
<td>8</td>
<td>F</td>
<td>3m</td>
<td>Dorsa of hands & feet extremities</td>
<td>Mother of case 7</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>F</td>
<td>infancy</td>
<td>Dorsa of hands & feet extremistis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>F</td>
<td>15y</td>
<td>Dorsa of hands & feet extremities</td>
<td></td>
</tr>
<tr>
<td>Kim, et al.</td>
<td>11</td>
<td>M</td>
<td>2y</td>
<td>Dorsa of hands & feet</td>
<td>Son of case 10</td>
</tr>
<tr>
<td>(1987)</td>
<td>12</td>
<td>M</td>
<td>10y</td>
<td>Dorsa of hands & feet extremities</td>
<td>Mother & one brother were also affected</td>
</tr>
<tr>
<td>Chung, et al.</td>
<td>13</td>
<td>F</td>
<td>12y</td>
<td>Dorsa of hands & feet</td>
<td></td>
</tr>
<tr>
<td>(1987)</td>
<td>14</td>
<td>M</td>
<td>15y</td>
<td>Lower extremities abdomen</td>
<td>One brother & father were also affected</td>
</tr>
</tbody>
</table>

*Negative sign indicates no family history; M, male; F, female; y, year; m, month.
to be unique to Japan. But Costa15 described two similar cases of DSH in South Americans and stated that a similar disorder is frequent in Brazil. In 1964, Siemens16 also reported a similar case in Europians under the term "acromelanosis albo-puncta". Although the early reports of DUH were also confined to Japanese patients,7,9 Findlay and Whiting10 recognized it in two Bantu females, and Rycroft et al11 reported an Iraqi girl who also had small stature and high tone deafness. The Negro girl reported by Petrozzi12 probably also had the disorder. In Korea, several cases of DSH13, 14, 17, 21 have been reported but there are only two previous reports of DUH.13, 14 A summary of reported cases of dyschromatosis in Korea is shown in Table 1.

The typical lesions are the same in both type of dyschromatosis, but the extent and severity of the involvement is a major difference differentiating DUH from DSH. The lesions of DSH are symmetrically distributed over extremities, particularly the distal hands and feet where spotted hyperpigmentation is mingled with hypopigmentation and also over the arms and legs. Although precipitating factors are unknown, that DSH is localized to sun-exposed areas suggests a role of ultraviolet radiation. In the physiogenetic study of the skin disease, Ito1 summarized DSH and xeroderma pigmentosum as well as freckles in a polymeric dominant group caused by common genotype of photosensitivity. He attributed the difference of phenotype to the individuality to the factors of photosensitivity. In DUH, the skin lesions are distributed all over the body, particularly the trunk, abdomen, and limbs. While the face may be affected, it is less commonly involved and, if so, less severely than elsewhere. The palms and soles are usually spared. But Suenaga8 reported involvement of palms with a few light brown macules in two patients and involvement of the sole in one. Furthermore, in many reported cases of DUH, as well as DSH, there were no seasonal variation in the intensity of pigmentation nor history of photosensitivity. Thus light is not the etiologic agent for all dyschromatosis. In a view of that, Suenaga8 suggested DUH cannot be enlisted in the same genetical group with DSH in spite of remarkable similarity in clinical appearance. Petrozzi et al.12 in 1971, reported a case of DUH in a malnourished Negro girl and suggested that the abnormal pigmented finding may represent the manifestations of malnutrition occurring during the early months of life. But in general, it is believed that dyschromatosis does not affect the general health of the patient. Nails, eyes, teeth, and hair are usually normal and there are no neurologic abnormalities. Only isolated patients have been reported to have systemic abnormalities. Suenaga,8 for example, reported a child with DUH, caries of the dorsal spine, coxa valgæ, and signs of nerve root compression.

Histologic features of dyschromatosis are not diagnostic in themselves. In DSH, the epidermis is normal except for an increase in melanin granules seen in the basal layer in the pigmented lesions and a decrease in the hypopigmented lesions. In DUH, histologic findings are similar with those of DSH, but there may be pigment incontinence. Hydropic degeneration of the basal layer and accumulation of the melanin in the upper dermis within melanophages are observed. Tanaka et al9 reviewed nine cases of previously reported DUH in Japan and divided them into three groups according to the histologic findings. Six patients showed only increase or decrease of melanin pigments in the basal layer, and two patients including their case showed the presence of melanophage in the upper dermis. Finally, two patients showed both of these histologic findings. Because pigment incontinence is observed in other congenital pigmenary anomalies, such as Naegeli's disease and Rothmund-Thomson's disease, the authors suggested DUH in which melanophage is present in the upper dermis, may have some etiological relationship to other congenital pigmentary anomalies.

Both forms of dyschromatosis have been observed to be familial and inheritance is probably autosomal dominant. For DSH, Toyama and Omori4 first reached this conclusion. Chun and Kim17 assumed the type of inheritance to be non-sex linked dominant inheritance. For DUH, Ichikawa and Hiraga7 who found DUH in seven members of two families, also suggested an autosomal dominant pattern of inheritance. And there are many family studies in the literature to support a dominant inheritance pattern.8, 9 In our case of
Table 2. Clinical features of some genetically determined pigmentary disorders

<table>
<thead>
<tr>
<th>Disease</th>
<th>Distribution, pattern</th>
<th>Hypopigmentation</th>
<th>Pigment incontinence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyschromatosis symmetrica hereditaria</td>
<td>Acral, mottled</td>
<td>+</td>
<td>-</td>
<td>No atrophy, no palmar pits</td>
</tr>
<tr>
<td>Acromelanosis progressiva</td>
<td>Acral, diffuse</td>
<td>-</td>
<td>-</td>
<td>Mental retardation</td>
</tr>
<tr>
<td>Acropigmentation of Kitamura</td>
<td>Acral, reticulate</td>
<td>-</td>
<td>-</td>
<td>Atrophic lesion, palmar pits, breakage of epidermal ridges</td>
</tr>
<tr>
<td>Dyschromatosis universalis hereditaria</td>
<td>Generalized, mottled</td>
<td>+</td>
<td>+</td>
<td>No atrophy, normal nails & teeth</td>
</tr>
<tr>
<td>Dyskeratosis congenita</td>
<td>Generalized, reticulate</td>
<td>+</td>
<td>+</td>
<td>Atrophy over extensor surfaces, dystrophic nails & teeth, thickened palms & soles, hyperhidrosis, excessive lacrimation, leukoplakia/ leukokeratosis</td>
</tr>
<tr>
<td>Franceschetti-Jadassohn syndrome</td>
<td>Generalized, reticulated</td>
<td>-</td>
<td>+</td>
<td>Enamel hypoplasia, palmoplantar keratoderma, hypohidrosis</td>
</tr>
<tr>
<td>Incontinentia pigmenti</td>
<td>Generalized, whorl/streak</td>
<td>-</td>
<td>+</td>
<td>Usually females, may have early erythematous-bullous stage with later hyperkeratosis</td>
</tr>
<tr>
<td>Incontinentia pigmenti achromians (Ito)</td>
<td>Generalized, whorl/streak</td>
<td>+</td>
<td>-</td>
<td>Hypopigmentation in reverse pattern of incontinentia pigmenti</td>
</tr>
</tbody>
</table>

DUH, seventeen individuals were affected in three generations of one family. To our knowledge, this case has the largest number of family members affected with DUH. By pedigree analysis, we find that DUH is inherited as an autosomal dominant trait. However, many sporadic cases have been reported. In Korean literature, three cases reported by Kim\(^{13}\) and one case reported by Chung\(^{20}\) were non-familial cases of DSH. In 1982, Yamada\(^{22}\) also reported a case of DUH with no family history.

The differential diagnosis of dyschromatosis includes a number of reticulate pigmentary disorders which are thought to be genetically determined.\(^ {23-25}\) The clinical features of the more important of these are listed in Table 2.

We would encourage other physicians to include dyschromatosis, which may be more common than is generally appreciated, in the differential diagnosis of pigmentary lesions occurring in similar patients. The connection between DUH and DSH remains unclear. Additional report of cases and further detailed studies, including dopa-reaction and electron-microscopic findings, are needed to elucidate the mechanism of inheritance of DUH and its association with DSH.

REFERENCES

9. Tanaka S, Tamaki E, Ogino A, Girik SK: A case of dyschromatosis universalis hereditaria with histological in-